CS222: Computer Architecture

Instructors:
Dr Ahmed Shalaby http://bu.edu.eg/staff/ahmedshalaby14\#
الطالب - المعيد - الادب - الاخكور

Chapter 3 :: Topics

- Introduction

- Latches and Flip-Flops
- Synchronous Logic Design
- Finite State Machines
- Timing of Sequential Logic
- Parallelism

Application Software	${ }^{\text {"'hello }}$ world!"
Operating Systems	
Architecture	
Microarchitecture	$\square \overleftrightarrow{\leftrightarrow}$
Logic	
Digital Circuits	-
Analog Circuits	$\stackrel{-19}{+-\frac{1}{0}}$
Devices	
Physics	∞

Introduction

- Outputs of sequential logic depend on current and prior input values - it has memory.
- Some definitions:
- State: all the information about a circuit necessary to explain its future behavior
- Latches and flip-flops: state elements that store one bit of state
- Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Sequential Circuits

- Give sequence to events
- Have memory (short-term)
- Use feedback from output to input to store information

State Elements

- The state of a circuit influences its future behavior
- State elements store state

Bistable circuit
SR Latch

- D Latch
- D Flip-flop

Bistable Circuit

- Fundamental building block of other state elements
- Two outputs: Q, \bar{Q}
- No inputs

Bistable Circuit Analysis

- Consider the two possible cases:

$$
\begin{aligned}
& -Q=0 \text { : } \\
& \text { then } \bar{Q}=1, Q=0 \text { (consistent) }
\end{aligned}
$$

$-Q=1$:
then $\bar{Q}=0, Q=1$ (consistent)

- Stores 1 bit of state in the state variable, Q (or $\overline{\mathrm{Q}}$)
- But there are no inputs to control the state

SR Latch Analysis

$$
\begin{aligned}
& -S=\mathbb{1}, R=0 \text { : } \\
& \text { then } Q=1 \text { and } \bar{Q}=0 \\
& \text { Set the output }
\end{aligned}
$$

$$
-S=0, R=1:
$$ Reset the output

$$
Y=\overline{A+B}
$$

$$
\text { then } Q=0 \text { and } \bar{Q}=1
$$

SR Latch Symbol

- SR stands for Set/Reset Latch
- Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
- Set: Make the output 1

SR Latch
Symbol ($S=1, R=0, Q=1$)

- Reset: Make the output 0 ($S=0, R=1, Q=0$)

D Latch

- Two inputs: $C L K, D$
- CLK: controls when the output changes
- D (the data input): controls what the output changes to
- Function
- When $\boldsymbol{C L K}=\mathbf{1}$,
D passes through to Q (transparent)
- When $\boldsymbol{C L K}=\mathbf{0}$,
Q holds its previous value (opaque)
- Avoids invalid case when

D Latch Symbol

D Latch Internal Circuit

D Flip-Flop

- Inputs: $C L K, D$

D Flip-Flop

- Function
- Samples D on rising edge of CLK
- When $C L K$ rises from 0 to $1, D$ passes through to Q
- Otherwise, Q holds its previous value
- Q changes only on rising edge of CLK
- Called edge-triggered

- Activated on the clock edge

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
- L1 is transparent
- L2 is opaque
- D passes through to N1
- When CLK = 1

- L2 is transparent
- L1 is opaque
- N1 passes through to Q
- Thus, on the edge of the clock (when CLK rises from $0 \rightarrow 1$)
- D passes through to Q

D Latch vs. D Flip-Flop

Registers

CLK

Enabled Flip-Flops

- Inputs: $C L K, D, E N$
- The enable input ($E N$) controls when new data (D) is stored
- Function
$-E N=1: D$ passes through to Q on the clock edge
$-E N=0$: the flip-flop retains its previous state
Internal
Circuit

Resettable Flip-Flops

- Inputs: $C L K, D$, Reset
- Function:
- Reset $=1: Q$ is forced to 0
- Reset $=0$: flip-flop behaves as ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset $=1$
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Internal
Circuit

Settable Flip-Flops

Inputs: $C L K, D$, Set

- Function:

- Set $=1: Q$ is set to 1
- Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

Synchronous Sequential Logic Design

- Breaks cyclic paths by inserting registers
- Registers contain state of the system
- State changes at clock edge: system synchronized to the clock
- Rules of synchronous sequential circuit composition:
- Every circuit element is either a register or a combinational circuit
- At least one circuit element is a register
- All registers receive the same clock signal
- Every cyclic path contains at least one register
- Two common synchronous sequential circuits
- Finite State Machines (FSMs)
- Pipelines

Finite State Machine (FSM)

- Consists of:

- State register

- Stores current state

- Loads next state at clock edge

- Combinational logic

- Computes the next state
- Computes the outputs

Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
- Moore FSM: outputs depend only on current state
- Mealy FSM: outputs depend on current state and inputs

Mealy FSM

FSM Example

- Traffic light controller
- Traffic sensors: T_{A}, T_{B} (TRUE when there's traffic)
- Lights: L_{A}, L_{B}

FSM Black Box

- Inputs: CLK, Reset, T_{A}, T_{B}
- Outputs: L_{A}, L_{B}

Reset

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Table

FSM State Transition Table

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_{1}	S_{0}	T_{A}	T_{B}	S_{1}^{\prime}	
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_{1}	S_{0}	T_{A}	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \oplus S_{0} \\
& S_{0}^{\prime}=\bar{S}_{1} \bar{S}_{0} \bar{T}_{A}+S_{1} \overline{S_{0}} \overline{T_{B}}
\end{aligned}
$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State	Inputs		Next State
S	T_{A}	T_{B}	S^{\prime}
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0
$3<30>$			

FSM Output Table

Current State			Outputs				
S_{1}	S_{0}	$L_{A 1}$	$L_{A 0}$	$L_{B 1}$	$L_{B 0}$		
0	0						
0	1						
1	0						
1	1						

FSM Output Table

Current State			Outputs				
S_{1}	S_{0}	$L_{A 1}$	$L_{A 0}$	$L_{B 1}$	$L_{B 0}$		
0	0	0	0	1	\mathbb{R}		

$$
\begin{aligned}
L_{A 1} & =S_{1} \\
L_{A 0} & =\overline{S_{1}} S_{0} \\
L_{B 1} & =\overline{S_{1}} \\
L_{B 0} & =S_{1} S_{0}
\end{aligned}
$$

FSM Schematic: State Register

Moore FSM

CLK

state register

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \oplus S_{0} \\
& S_{0}^{\prime}=\overline{S_{1}} \overline{S_{0}} \overline{T_{A}}+S_{1} \overline{S_{0}} \overline{T_{B}}
\end{aligned}
$$

$$
\begin{aligned}
L_{A 1} & =S_{1} \\
L_{A 0} & =\overline{S_{1}} S_{0} \\
L_{B 1} & =S_{1} \\
L_{B 0} & =S_{1} S_{0}
\end{aligned}
$$

FSM Schematic: Next State Logic

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \oplus S_{0} \\
& S_{0}^{\prime}=\overline{S_{1}} \overline{S_{0}} \overline{T_{A}}+S_{1} \overline{S_{0}} \overline{T_{B}}
\end{aligned}
$$

$$
\begin{aligned}
L_{A 1} & =S_{1} \\
L_{A 0} & =\overline{S_{1}} S_{0} \\
L_{B 1} & =\bar{S}_{1} \\
L_{B 0} & =S_{1} S_{0}
\end{aligned}
$$

FSM Schematic: Output Logic

inputs
next state logic

$$
\begin{aligned}
& S_{1}^{\prime}=S_{1} \oplus S_{0} \\
& S_{0}^{\prime}=\overline{S_{1}} \overline{S_{0}} \overline{T_{A}}+S_{1} \overline{S_{0}} \overline{T_{B}}
\end{aligned}
$$

© Digital Design and Computer Architecture, 2 ${ }^{\text {nd }}$ Edition, 2012
state register
output logic outputs

$$
\begin{aligned}
& L_{A 1}=S_{1} \\
& L_{A 0}=\overline{S_{1}} S_{0} \\
& L_{B 1}=\overline{S_{1}} \\
& L_{B 0}=S_{1} S_{0}
\end{aligned}
$$

FSM State Encoding

- Binary encoding:
- i.e., for four states, $00,01,10,11$
- One-hot encoding
- One state bit per state
- Only one state bit HIGH at once
- i.e., for 4 states, 0001, 0010, 0100, 1000
- Requires more flip-flops
- Often next state and output logic is simpler

Moore vs. Mealy FSM

Layla has a snail that crawls down a paper tape with 1's and 0 's on it. The snail smiles whenever the last two digits it has crawled over are 01. Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams

Moore FSM

outputs depend only on the current state
smiles whenever the last two digits it has crawled over are 01.

Mealy FSM

outputs depend on current state and inputs

Mealy FSM: arcs indicate input/output

Moore FSM State Transition Table

Current					
State		Inputs		Next State	
S_{1}	S_{0}	A	S_{1}^{\prime}	S_{0}^{\prime}	
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			

State	Encoding
S0	00
S1	01
S2	10

Moore FSM

Moore FSM State Transition Table

Current State				Inputs		Next State	
S_{1}	S_{0}	A	S_{1}^{\prime}	S_{0}^{\prime}			
0	0	0	0	1			
0	0	1	0	0			
0	1	0	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	0	0			

$$
\begin{aligned}
& S_{1}{ }^{\prime}=S_{0} A \\
& S_{0}{ }^{\prime}=\bar{A}
\end{aligned}
$$

State	Encoding
S0	00
S1	01
S2	10

Moore FSM

Moore FSM Output Table

$$
Y=S_{1}
$$

Moore FSM

Moore FSM Schematic

Current State		Inputs		$c \mid$ $S_{1}$$S_{0}$		A	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	0	1				
0	0	1	0	0				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	0	0				

Current State		Output
S_{1}	S_{0}	Y
0	0	0
0	1	0
1	0	1

$$
\begin{array}{ll}
S_{1}{ }^{\prime}=S_{0} A & Y=S_{1} \\
S_{0}{ }^{\prime}=\bar{A} &
\end{array}
$$

Mealy FSM State Transition \& Output Table

Current State	Input	Next State	Output
S_{0}	A	S_{0}^{\prime}	Y
0	0		
0	1		
1	0		
1	1		

State	Encoding
S0	0
S1	1

Mealy FSM

Mealy FSM State Transition \& Output Table

Current State	Input	Next State	Output
S_{0}	A	S_{0}^{\prime}	Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

Mealy FSM

Mealy FSM Schematic

Moore Vs. Mealy FSM Schematic

Moore FSM

outputs depend only on the current state

Mealy FSM

outputs depend on current state and inputs

Moore \& Mealy Timing Diagram

FSM Design Procedure

1. Identify inputs and outputs
2. Sketch state transition diagram
3. Write state transition table
4. Select state encodings
5. For Moore machine:
6. Rewrite state transition table with state encodings
7. Write output table
8. For a Mealy machine:
9. Rewrite combined state transition and output table with state encodings
10. Write Boolean equations for next state and output logic
11. Sketch the circuit schematic

Parallelism

- Two types of parallelism:
- Spatial parallelism
- duplicate hardware performs multiple tasks at once
- Temporal parallelism
- task is broken into multiple stages
- also called pipelining
- for example, an assembly line

Parallelism Definitions

- Token: Group of inputs processed to produce group of outputs
- Latency: Time for one token to pass from start to end
- Throughput: Number of tokens produced per unit time

Parallelism increases throughput

Parallelism Example

- Ben bakes cookies to celebrate traffic light controller installation
- 5 minutes to roll cookies
- 15 minutes to bake
- What is the latency and throughput without parallelism?

> Latency $=5+15=20$ minutes $=1 / 3$ hour Throughput $=1$ tray $/ 1 / 3$ hour $=3$ trays/hour

Parallelism Example

- What is the latency and throughput if Ben uses parallelism?
- Spatial parallelism: Ben asks Allysa to help, using her own oven
- Temporal parallelism:
- two stages: rolling and baking
- He uses two trays
- While first batch is baking, he rolls the second batch, etc.

Spatial Parallelism

Latency $=5+15=20$ minutes $=1 / 3$ hour
Throughput $=2$ trays $/ 1 / 3$ hour $=6$ trays/hour

Temporal Parallelism

Latency $=5+15=20$ minutes $=1 / 3$ hour
Throughput $=1$ trays/ $1 / 4$ hour $=4$ trays/hour

Using both techniques, the throughput would be $\mathbf{8}$ trays/hour

